Graphing Polynomials

How to graph Polynomials

To graph any polynomial function, we need to know the real roots(zeroes) along with their multiplicity  and  end behavior of the polynomial. As we are already aware about end behavior of polynomials in previous section, we will talk about roots and their multiplicity. How multiplicity affect the graph of polynomial.

While sketching the graphs of polynomial functions we should keep in mind that graph of polynomials is always smooth without any holes, breaks  or sharp corners.

Multiplicity of zeroes:  This refers to the number of times a factor associated with that zero repeat itself in the polynomial expression. In simple words it is the exponent of the associated  factor.

Some facts:

If x=a is a zero of the polynomial  p(x) with multiplicity k  p(x)=(x-a)^{k} then,

  1. If k is odd then graph will cross the x-axis at x=a.
  2. If k is even then graph only touch the x-axis and not actually cross it. It bounce back in same direction.
  3. If then the graph will flatten out at x=a .
  4. A polynomial with degree n will have at most n-1 turning points(humps) in the graph.

It is easy to sketch the polynomial when given in factored form. If  not given in factored form then we have to find its zeroes using rational root theorem and factoring which is another topic  to be discussed separately.

Steps used in graphing Polynomials:

  • Predict the end behavior of given polynomial using degree and leading coefficient .
  • Find zeroes of given polynomial and rewrite it in factored form if not given already in factored form.
  • Find y intercept by substituting x as 0 in the given function.
  • Plot the x intercepts(zeroes) and y intercept using rules of multiplicity given above.
  • Connect all the points keeping in mind the end behavior.

 

Example1:  Graph the polynomial function

{\color{Red} p(x)=x^{3}-x^{2}-2x}

Solution:

Step 1)          degree = 3(odd)

Leading coefficient= Positive

This graph will fall towards left and rise to right.

Step 2)

p(x)=x\left ( x^{2}-x-2 \right )

=x(x-2)(x+1)

Zeros are   x=-1 ,0, 2

Step 3)               Plug in x=0 to find y intercept.

P(0) = 0-0-2(0)= 0

Y intercept : (0,0)

Step 4 )              Plotting all the points we get following graph.

 

Example2:  Graph the polynomial function

{\color{Red} p(x)=x(x+1)^{2}(x-1)^{3}}

Solution:

Step 1)      Degree= 1+2+3= 6 (even)

leading coefficient = positive

Both ends will rise up.

Step 2)      Already in factored form.

X=-1 ,multiplicity 2(touch x axis at -1and bounce back)

X=0 , multiplicity 1 (intersect  at x=0)

X=1 ,multiplicity 3 (cross x axis but get flat at x=1)

Step 3)      Plug in x=0 to find y intercept.

P(0)= 0(1)(-1) = 0     =>  (0,0)

Step 4)      Plotting all the x intercepts(zeroes) and y intercept  and connecting them we get the following  graph.

 

 

 

Practice problems:

Sketch the following polynomial functions.

  1. p(x)=x^{4}-x^{3}-6x^{2}
  2. p(x)=-x^{5}+4x^{3}
  3. p(x)=-x(x+2)(x-2)(x+3)
  4. p(x)= (x-1)(x+2)^{2}

 

 

 

Solving Polynomial inequalities

How to solve Polynomial Inequalities

A polynomial function f(x) which takes of any of these forms f(x)>0 , f(x) ≥0 , f(x)<0, f(x)≤0   is called polynomial inequality.

To solve polynomial inequalities , following procedure is used.

  • Find polynomial function in factored form if not given already in factored form. Then find its zeros.
  • Find intervals using these zeros on a number line.
  • Check each interval by substituting any  point  from that  interval into the factored form of polynomial function.
  • Make a sign chart which will help you to decide the domain for final answer.

 

Example1: Determine the x values that cause the polynomial function to be (a) zero, (b) positive, and (c) negative.

  f(x)=(x+2)(x+1)(x-5)

Solution:

Step 1) As the given polynomial function already in factored form  so we just need to find the zeros.

(x+2)(x+1)(x-5) = 0

x+2 =0 , x+1 =0 , x-5 =0

Zeros are : x = -2,-1,5

Step 2) Using these zeros on a number line, we get the number line divided into following intervals.

(- ∞,-2) , (-2,-1), (-1,5) ,(5,∞)

Step 3) Next we check these intervals by substituting  any point from each interval into  factored form of polynomial function. Remember not to use end points of these intervals and we are concerned only with signs not the exact values.

For interval (-∞,-2)  , lets substitute x= -3

f(-3) = (-3+2)(-3+1)(-3-5)

= (-)(-)(-)  < 0  (Negative)

For interval (-2,-1), lets substitute x = -1.5

f(-1.5) = (-1.5+2)((-1.5+1)(-1.5-5)

= (+)(-)(-) > 0 (positive)

For interval (-1,5) , lets substitute  x=0

f(0) = (0+2)(0+1)(0-5)

= (+)(+)(-) < 0  (Negative)

For interval (5, ) , lets assume  x=6

f(6) = (6+2)(6+1)(6-5)

= (+)(+)(+)  > 0 (Positive)

Now we can write answer for each part .

  1. Zeros     x= -2,-1,5
  2. Positive   (-2,-1) U (5,∞ )
  3. Negative (-∞ ,-2) U (-1,5)

This process was explained  in detailed steps given above. Once we understand  the process ,we don’t need to show all this work  and all this work can be squeezed into a sign chart.

     Intervals      (x+2)(x+1)(x-5)     Result
    (-∞,-2)        (-)(-)(-)        (-)   < 0
    (-2,-1)        (+)(-)(-)        (+)   > 0
    (-1,5)        (+)(+)(-)        (-)   < 0
    (5,∞ )        (+)(+)(+)        (+) > 0

 

Example2. Complete the factoring if needed, and solve the polynomial inequality using a sign chart.

{\color{Red} 2x^{3}-3x^{2}-11x+6\geq 0}

Solution:

step1) First we assume all possible rational zeros using  Rational root theorem.

±1,  ±2,  ±3, ±6,  ±1/2,   ±3/2

Step2 ) We can check these zeros one by one using synthetic division. After checking several zeros we got that-2 gives 0 remainder. So we got first zero as x=-2 .

 

Step 3) using the terms in the bottom line  we get the quotient polynomial as   2x^{2}-7x+3 which can be factored further to get remaining two zeros. Since this is quadratic polynomial so we can try factoring .

2x^{2}-7x+3

2x^{2}-6x-x+3

2x(x-3)-1(x-3)

(x-3)(2x-1)

Using zero product rule, we get the zeros as

x-3=0 ,       2x-1 =0

x =  3 ,       x   = 1/2

We get the complete factored form as:

(x+2)(x-3)(2x-1) ≥ 0

Step 4) Now  we use these three zeros to find intervals on number line.

(-∞, -2) , (-2, 1/2 ), (1/2  ,3) ,(3, ∞ )

Step 5) Next we check each interval by substituting any point from each interval into factored form of original equation and make a sign chart. For answer we accept only those intervals which have positive results because this polynomial inequality has ≥ sign.

     Intervals      (x+2)(x-3)(2x-1)     Result
    (-∞ ,-2)        (-)(-)(-)        (-) Not accepted
    (-2, 1/2 )        (+)(-)(-)        (+) Accepted
    (1/2 ,3)        (+)(-)(+)        (-) Not accepted
    (3, ∞ )        (+)(+)(+)        (+)  Accepted

Step 6) The intervals having positive results are accepted  and  forms  the final answer but we need to use closed intervals because of  sign.

So answer is :    [-2, ½ ] U [3,∞ )

 

Example3. Solve the following inequalities for the given polynomial functions.

    a) f(x)>0      b) f(x)≥ 0            c) f(x)<0             d) f(x) ≤ 0

1) {\color{Red} f(x)=\left ( x^{2}+4 \right )\left ( 2x^{2}+3 \right )}

Solution: Using zero product rule, we get its solution as non real numbers. Also when we look at this function, we see that both factors have positive terms (x^{2}  is always a positive term).

This means this function will always be positive for all real values of x. So the answer for part a and part b will be all real numbers which is represented in interval forms as  (-∞,∞ )

This function will never be negative. So answers for different parts can be written as,

  1. (-∞,∞ )
  2. (-∞,∞ )
  3. No solution
  4. No solution

 

2)  {\color{Red} f(x)=\left ( x^{2}+1 \right )\left ( -2-3x^{2} \right )}

Rewriting this function in simplified form by taking out negative sign,

f(x)=-\left ( x^{2}+1 \right )\left ( 2+3x^{2} \right )

Here both factors  have positive terms so both factors are positive but negative sign outside, make the result  negative. That means this function will always  remain negative for all real values of x (-∞,∞ ). So answers for different parts can be written as,

  1. No solution
  2. No solution
  3. (-∞,∞ )
  4. (-∞,∞ )

 

Example 4. Consider the collection of all rectangles that have lengths 2 in. less than twice their widths. Find the possible widths (in inches) of these rectangles if their perimeters are less than 200 in.

Solution:

Lets assume width of rectangle = x

Then length of rectangle = 2x-2

Given that ,  Perimeter < 200

2( length+ width) < 200

2( 2x-2 +x )  < 200

3x -2       < 100

3x         < 102

x       < 34

As length and width always  positive integers(>0) so,

x > 0 and 2x-2 >0

2x >2  =>   x > 1

So the possible widths of rectangles  are given as,

1 < x < 34 (inches)

 

 

Practice problems:

1) Determine the x values that cause the polynomial function to be (a) zero, (b) positive, and (c) negative.

f(x)=(x+7)(x+4)(x-6)^{2}

2)  Complete the factoring if needed, and solve the polynomial inequality using a sign chart.

2x^{3}-5x^{2}-x+6 \geq 0

3) Solve the following inequalities for the given polynomial functions.

a) f(x)>0     b) f(x)≥ 0            c) f(x)<0             d) f(x)≤ 0

f(x)=\left (2x^{2}-2x+5 \right )\left ( 3x-4 \right )^{2}

4)The Grovenor Candy Co. finds that the cost of making a certain candy bar is $0.13 per bar. Fixed costs amount to $2000 per week. If each bar sells for $0.35, find the minimum number of candy bars that will earn the company a profit.

 

 

 

 

 

 

 

Answers:

1)  a. x=-7,-4,6           b. (-∞ ,-7)U(-4,6)U(6,∞ )            c) (-7,-4)

2) (-1, 3/2 ) U (2,∞ )

3) a.(-∞, 4/3 )U(4/3 ,∞ )    b. (-∞,∞ )          c) No solution           d) x=4/3

4) Minimum 9091 candies

 

 

 

 

 

 

 

Solving Rational equations in one variable

How to solve Rational equations in one variable

Equations  involving rational expressions or fractions of the form \frac{f(x)}{g(x)}  , are called rational equations. To solve rational equations we use the following procedure:

Step 1) First find  least common denominator (LCD) of all the terms of the equation. LCD may contain variables .

Step2) Get rid of fractions by multiplying both sides of the equation  with LCD. Simplify the equation.

Step 3) Resulting simplified algebraic equation may have solutions that are not the solutions of original equation. These are extraneous solutions. For this reason we must check each solution by substituting in original equation.

 

Example1. Solve the equation algebraically. Support your answer numerically .

{\color{Red} x+5=\frac{14}{x}}

Solution: step1)

Here  only rational expression is  \frac{14}{x}  .  So LCD = x.

Step 2) To get rid of this fractional term we multiply both sides with x.

x(x+5) = 14

x^{2}+5x-14=0                      Subtract 14 from both sides.

(x+7)(x-2) = 0                              Get the factors

(x+7) =0   or   (x-2) =0              Zero factor property

x = -7 , x =2

Step 3) Confirm Numerically,

For x =-7,           -7+5 = \frac{14}{-7}

-2 = -2                 It is working !

For x= 2,               2+5 = 14/2

7  = 7                  This too is working !

So the solutions  are  x=-7 ,2

 

Example2. Solve the equation algebraically. Support your answer numerically and identify any extraneous solutions.

{\color{Red} x + \frac{4x}{x-3}=\frac{12}{x-3}}

Solution:   step 1) LCD = (x-3)

Step2) Multiply all the terms with (x-3) and we get,

x(x-3) + 4x = 12

x(x-3) +4x-12 = 0

x(x-3) +4(x-3) = 0

(x-3)(x+4) = 0

(x-3)=0  or  (x+4) = 0

x= -4, 3

step 3) Confirm numerically,

For x= -4   ,   Plugin into original equation.

-4+\frac{4(-4)}{-4-3}=\frac{12}{-4-3}

-4 +\frac{16}{7}=-\frac{12}{7}

-\frac{12}{7}=-\frac{12}{7}        This is working !

For x= 3,

3+\frac{4(3)}{3-3}=\frac{12}{3-3}

3+\frac{12}{0}=\frac{12}{0}          which is not defined, so not working.

Extraneous solution is x=3.

Only solution is x= -4 .

 

Example3. Solve the equation algebraically. Support your answer numerically and identify any extraneous solutions.

{\color{Red} \frac{3}{x+2}+\frac{6}{x^{2}+2x}=\frac{3-x}{x}}

Solution: Step 1) Write  the denominators in factored form wherever possible and then find LCD.

\frac{3}{x+2}+\frac{6}{x(x+2)}=\frac{3-x}{x}

LCD = x(x+2)

Step2 ) Multiply all the terms with LCD to get rid of fractions.

3(x)+6 = (3-x)(x+2)

3x+6=3x+6-x^{2}-2x

x^{2}+2x=0

x(x+2) = 0

x = -2,0

Step 3) Confirm numerically,

For x=-2,     Plugin into original equation

\frac{3}{-2+2}+\frac{6}{(-2)^{2}+2(-2)}=\frac{3-(-2)}{-2}

\frac{3}{0}+\frac{6}{0}= -\frac{5}{2}                                          Which is not defined.

So x=-2 not working.

For x= 0 ,

\frac{3}{0+2}+\frac{6}{(0)^{2}+2(0)}=\frac{3-(0)}{0}

\frac{3}{2}+\frac{6}{0}=\frac{3}{0}                           which is again not defined.

So x=0 also not working. Hence both solutions are extraneous solutions.

So this rational equation doesn’t have any solutions.

 

Example 4. Solve the equation algebraically. Support your answer numerically and identify any extraneous solutions.

{\color{Red} \frac{4x}{x+4}+\frac{5}{x-1}=\frac{15}{x^{2}+3x-4}}

Solution:  step 1)  Write  the denominators in factored form wherever possible and then find LCD.

\frac{4x}{x+4}+\frac{5}{x-1}=\frac{15}{(x+4)(x-1)}

LCD = (x+4)(x-1)

Step 2) Multiply all the terms with LCD to get rid of fractions.

4x(x-1) + 5(x+4) = 15

4x^{2}-4x+5x+20-15=0

4x^{2}+x+5=0

This quadratic equation is not factorable. So we can use quadratic formula to get the solutions for x.

x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a} = \frac{-1\pm \sqrt{1^{2}-4(4)(5)}}{2(4)}

x=\frac{-1\pm \sqrt{-79}}{8}   which are not real solutions.

So no real solutions possible for this rational equation.

 

Example 5. Mid Town Sports Apparel, Inc., has found that it needs to sell golf hats for $2.75 each in order to be competitive. It costs $2.12 to produce each hat, and it has weekly overhead costs of $3000.

(a) Let x be the number of hats produced each week. Express the average cost (including overhead costs) of producing one hat as a function of x.

(b) Solve algebraically to find the number of golf hats that must be sold each week to make a profit. Support your answer graphically.

(c) How many golf hats must be sold to make a profit of $1000 in 1 week? Explain your answer.

Solution:

Part a) Cost of producing one hat =$2.12

Cost of producing x hats = 2.12x

Total cost function C(x) = variable cost+ fixed cost

C(x) = 2.12x +3000

Average cost function \frac{C(x)}{x}= \frac{2.12x+3000}{x}

 

Part b) To make a profit we need to find break even point , when cost function is equal to revenue function.

Sale price of each hat = $2.75

Revenue function R(x) = 2.75x

C(x) = R(x)

2.12x +3000 = 2.75x

3000 = 0.63x

4761.90 = x

x ≈ 4762

4762 hats must be sold each week to make a profit.

 

Part c)                Revenue – cost = profit

2.75x–(2.12x+3000) = 1000

0.63x -3000 = 1000

x = 4000/0.63  = 6349.206

x ≈ 6350

6350 hats must be sold each week to earn a profit of $1000.

 

 

Practice problems:

Solve the following equations algebraically. Support your answer numerically and identify any extraneous solutions.

  1. \frac{x-3}{x}-\frac{3}{x+1}+\frac{3}{x^{2}+x}=0
  2. 2-\frac{1}{x+1}=\frac{1}{x^{2}+x}
  3. x^{2}+\frac{5}{x}=8

4) Consider all rectangles with an area of 182 sq.ft . Let x be the length of one side of such a rectangle.

(a) Express the perimeter P as a function of x.

(b) Find the dimensions of the rectangle that has the least

perimeter. What is the least perimeter  ?

 

 

 

 

 

 

 

Answers:

  • X=0,5 ; extraneous solution x=0
  • X=-1 , ½ ; extraneous solution x=-1
  • x≈-3.1 , x≈0.661, x≈2.439
  • a) P(x) = 2x+(364/x)         b) x ≈13.49 , p=53.96

Solving Rational Inequalities

How to solve rational inequalities

The inequalities having rational expressions or fractions either on one side  or on both sides are called rational inequalities. This is similar to solving  rational expression in one variable  but solving rational inequalities also consists of making intervals and sign chart after finding zeros.

Here is the procedure  to solve rational inequalities.

Step 1) Move all the terms to left side, making right side as 0.

Step2) Then find  least common denominator (LCD) of all the terms of the equation. LCD may contain variables .

Step3) Simplify the terms on top after making same denominators.

Step4) Find the zeros and the x values where function is undefined. To get these values we set numerator and denominator = 0 and solve.

Step5) Using these x values, find intervals on number line.

Step6) Then check these  intervals and make a sign chart. Depending on the inequality sign we choose the intervals for final answer. Open and closed intervals  are also chosen according to the given inequality sign.

Lets work on some examples to understand the process.

 

Example1: Solve the following inequality.

\dpi{120} {\color{Red} \frac{2x+4}{x-1}\geq 5}

Solution:  Step1)  Move all the terms to left to get right side as 0

\dpi{120} \frac{2x+4}{x-1}- 5\geq 0

Step2) Here LCD=(x-1) lets make all denominators same using LCD.

\dpi{120} \frac{2x+4}{x-1}- \frac{5}{1}\frac{\left (x-1 \right )}{\left (x-1 \right )}\geq 0

Step3) Simplify the terms on top.

\dpi{120} \frac{2x+4-5(x-1)}{x-1}\geq 0

\dpi{120} \frac{-3x+9}{x-1}\geq 0

Step4) Setting numerator and denominator =0  and solving , we get           x = 1,3

X=3 is the zero of the function and at x=1 this function is undefined so we consider both these values to get intervals.

Step 5) Intervals are  (-∞,1) ,(1,3), (3,∞) . Then we check each interval by testing any point from each interval into simplified rational expression in step 3.

Step 6) lets get a sign chart.

Intervals  \dpi{120} \frac{-3x+9}{x-1}   result
(-∞, 1)              \dpi{120} \frac{\left ( + \right )}{\left ( - \right )}      – Not accepted
(1,3)             \dpi{120} \frac{\left ( + \right )}{\left ( + \right )}      +  Accepted
(3, ∞)            \dpi{120} \frac{\left ( - \right )}{\left ( + \right )}      – Not accepted

 

Since this inequality has ≥ sign so we choose that closed interval which gives positive result.

But x=1  make this function undefined so 1 can’t be included in the solution interval. Therefore final answer is (1,3]

 

Example2. Solve the following inequality using a sign chart.

\dpi{120} {\color{Red} \frac{x^{3}(x-2)}{(x+3)^{2}}< 0}

Solution: Here we have the rational expression already factored and simplified. So we don’t need to work for initial three steps and can directly jump to step 4. For that we set numerator and denominator =0 and get x values as x=-3,0 and x=2.

Using these x values, we get intervals as,  (-∞,-3) ,(-3,0) ,(0,2) and (2,∞). Now we get a sign chart.

 

   Intervals        \dpi{120} \frac{x^{3}(x-2)}{(x+3)^{2}}      result
    (-∞,-3)         \dpi{120} \frac{(-)(-)}{(+)}           +  Not accepted
    (-3,0)      \dpi{120} \frac{(-)(-)}{(+)}           +  Not accepted
     (0,2)      \dpi{120} \frac{(+)(-)}{(+)}           –   Accepted
     (2, ∞)     \dpi{120} \frac{(+)(+)}{(+)}           +  Not accepted

 

Since this inequality has < sign so we accept those open intervals which gives negative results.

Therefore final answer is (0,2).

 

Rational inequalities involving absolute value.

We have to be careful while solving rational inequalities with absolute sign, sometimes we need to use definition of absolute function to get perfect sign chart. We consider both positive and negative cases  while simplifying  rational inequality with absolute sign. Follow the given examples to understand the concept.

 

Example 3. Solve the following rational inequality using sign chart.             

\dpi{120} {\color{Red} \frac{(x-3)}{\left | x+2 \right |}< 0}

Solution: Setting numerator =0 we get the zero as x=3 and  x=-2 make this function undefined. Using these two points we get the intervals on number line as (-∞, -2) ,(-2,3) and (3, ∞). Lets get a sign chart.

   Intervals      \dpi{120} \frac{(x-3)}{\left | x+2 \right |}    Result
  (-∞,-2)      \dpi{120} \frac{(-)}{(+)}         –  Accepted
  (-2,3)      \dpi{120} \frac{(-)}{(+)}         –  Accepted
   (3,∞)       \dpi{120} \frac{(+)}{(+)}         + Not accepted

 

Since  this inequality  has < sign so we choose those open intervals which gives negative result.

Therefore  final answer is   (-∞, -2)U(-2,3).

 

Example4. Solve the following rational inequality.

\dpi{120} {\color{Red} \frac{\left | x-1 \right |}{x+2}< 1}

Solution: Step 1) First  we subtract 1 from both sides to get right side as 0.

\dpi{120} \frac{\left |x-1 \right |}{x+2}- 1< 0

Step2)     LCD = (x+2) lets make all denominators same .

\dpi{120} \frac{\left |x-1 \right |}{(x+2)}- 1\frac{\left (x+2 \right )}{\left (x+2 \right )}< 0

Step 3)      Simplify the terms on top

\dpi{120} \frac{\left | x-1 \right |-(x+2)}{x+2}< 0

We have to simplify the top having absolute value, so two cases arise using definition of absolute functions.

\dpi{120} \left | x-1 \right |=\begin{cases} -(x-1) & \text{ if } x< 1\\ (x-1) & \text{ if } x\geq 1 \end{cases}

Case 1. When x-1 ≥ 0   => x ≥ 1 Then we have |x-1|= (x-1)

\dpi{120} \frac{(x-1)-(x+2)}{x+2}< 0

\dpi{120} \frac{-3}{x+2}< 0

x+2 > 0

x > -2

But  domain is x≥ 1 so solution set would be [1,∞)

Case 2. When x-1 < 0  =>  x < 1 then we have |x-1|=-(x-1)

\dpi{120} \frac{-(x-1)-(x+2)}{x+2}< 0

\dpi{120} \frac{-(2x+1)}{x+2}< 0

Multiply both sides with -1 and inequality sign get reversed.

\dpi{120} \frac{(2x+1)}{x+2}> 0

Now set numerator and denominator =0 to get x values for intervals. We get x = -1/2  and x= -2  so the intervals are :

(-∞,-2) , (-2, -1/2) ,(-1/2 ,∞)

 

   Intervals       \dpi{120} \frac{2x+1}{x+2}    result
   (-∞, -1/2)         \dpi{120} \frac{(-)}{(-)}       +  Accepted
   (-2, -1/2)         \dpi{120} \frac{(-)}{(+)}       – Not accepted
   ( -1/2 , ∞ )         \dpi{120} \frac{(+)}{(+)}      +  Accepted

 

As this inequality has > sign so we accept  those open intervals which gives positive results.  But in this case  domain is  x<1  so the answer  is (-∞,-2)U( -1/2  ,1 ) .

For final answer we have to combine the results of case 1 and case 2 both. Combining  them we get final answer as,

                   (-∞,-2)U( -1/2, ∞ )

 

Solving an inequality involving a Radical.

 

Example5. Solve the following inequality.

\dpi{120} {\color{Red} (2x-1)\sqrt{x+4}< 0}

Solution:  We know that radicals are not defined for negative values  so,

x+4 ≥ 0   =>  x  ≥ -4

We have to consider this domain while solving this inequality.

Zeros of this function are  x= ½ and x=-4

So we get the intervals as (-4,½) , (½ ,∞)

As this inequality has < sign so we accept those  open intervals which  gives negative result.

So the final answer is (-4, ½)

 

 

 

 

 

 

 

Practice problems:

1) Determine the real values of x that cause the function to be

(a) zero, (b) undefined, (c) positive, and (d) negative.

 \dpi{120} \frac{\sqrt{x+5}}{(2x+1)(x-1)}      

Solve the following inequalities using sign chart wherever possible.

2)       \dpi{120} \frac{1}{(x+1)}+\frac{1}{(x-3)}\leq 0

3)      \dpi{120} \frac{(x-5)\left | x-2 \right |}{2x-3}\geq 0

4)       \dpi{120} (x-3)\sqrt{x+1}\geq 0

 

 

 

Answers:

  1. x=-5               b. x=-½, 1 and x < -5            c. (-5, -1/2) U(1,∞)           d) (-1/2,1)
  2. (-∞,-1) U [1,3)
  3. [5,∞)
  4. {-1} U [3,∞)

 

Logistic Functions and their graphs

Logistic functions use exponential function. This function, though related to exponential function  , can’t be obtained from  by translations, reflections ,horizontal and vertical stretches or shrinks. So we give logistic function a formal introduction.

Let a, b, c and k be positive constants with 0<b<1. A logistic  growth function in x is a function that can be written in the form,

\dpi{150} \mathbf{f(x)= \frac{c}{1+ab^{x}}}          or           \dpi{150} \mathbf{f(x)= \frac{c}{1+ae^{-kx}}}

where constant C is limit to growth and is also called carrying capacity.

If b>1 or k<1  then these formulas yield logistic decay functions.

Unless otherwise stated , all logistic functions are taken as logistic growth functions.

If we set a=c=k=1 then we obtain basic logistic function as,

\dpi{150} \mathbf{f(x)= \frac{1}{1+e^{-x}}}

All  logistic functions have graphs like basic logistic function as shown below.

Following are the properties of logistic function graph:

  • Horizontal lines y=0 and y=c are the horizontal asymptotes.
  • Y intercept is \dpi{120} (0,\frac{c}{1+a})
  • Domain of logistic function is all real numbers (-∞,∞ ) and range is (0,c) i.e 0<y<c
  • Graph is increasing from left to right.
  • Central point \dpi{120} \left ( \frac{lna}{k},\frac{c}{2} \right ) is the point of maximum growth. This is also called point of symmetry. To the left of this point, growth rate is increasing and towards right of this point, growth rate is decreasing.

 

Example1: Graph the following logistic function. Identify the asymptotes, y-intercept, and point of maximum growth.

{\color{Red} f(x)= \frac{5}{1+e^{-10x}}}

Solution: Comparing the given function with  \dpi{120} f(x)= \frac{c}{1+ae^{-kx}}

We get  a=1,k=10 and c=5

Horizontal asymptote: y=0  and y=5

Y intercept :

\dpi{120} \left (0,\frac{c}{1+a} \right )=(0,\frac{5}{1+1})= (0, 2.5)

Point of maximum growth:

\dpi{120} \left ( \frac{lna}{k},\frac{c}{2} \right )=\left ( \frac{ln1}{10},\frac{5}{2} \right )= (0,2.5)

End behavior  :

\dpi{120} \lim_{x->-\infty }f(x) = 0

\dpi{120} \lim_{x->\infty }f(x) = 5

Using the above information we can draw the graph manually.

 

Example2: The number of students infected with flu at Springfield High School after t days is modeled by the function

               \dpi{120} {\color{Red} f(x)= \frac{800}{1+49e^{-0.2t}}}

(a) What was the initial number of infected students?

(b) When will the number of infected students be 200?

(c) The school will close when 300 of the 800-student body  are infected. When will the school close?

Solution: To find initial number of infected students at the end of first day , we plugin  t=0.

\dpi{120} f(0)= \frac{800}{1+49e^{-0.2*0}}

\dpi{120} f(0)= \frac{800}{1+49(1)}= \frac{800}{50} = 16

So 16 students were infected initially.

 

b) We are given f(t) = 200 and we need to find t (number of days).

\dpi{120} 200= \frac{800}{1+49e^{-0.2t}}

\dpi{120} 1+49e^{-0.2t}=\frac{800}{200}=4

\dpi{120} 49e^{-0.2t}= 4-1 =3

\dpi{120} e^{-0.2t}=\frac{3}{49}

\dpi{120} -0.2t = ln\left ( \frac{3}{49} \right )

\dpi{120} t = \frac{-1}{0.2}ln\left ( \frac{3}{49} \right )

t = 13.996 ≈  14 days

 

c)

\dpi{120} 300= \frac{800}{1+49e^{-0.2t}}

\dpi{120} 1+49e^{-0.2t}=\frac{800}{300}=\frac{8}{3}
\dpi{120} 49e^{-0.2t}= 4-1 =3

\dpi{120} e^{-0.2t}=\frac{3}{49}

\dpi{120} -0.2t = ln\left ( \frac{3}{49} \right )

\dpi{120} t = \frac{-1}{0.2}ln\left ( \frac{3}{49} \right )

t = 16.904  17 days

School will close after 17 days.

 

 

Practice problems:

  1. Graph the following logistic function. Identify the asymptotes, y-intercept, and point of maximum growth.

\dpi{120} f(x)= \frac{6}{1+0.8e^{-2x}}

2.   Solve the following logistic equation

\dpi{120} \frac{8}{1+3e^{-x}}=5

3.   Using 20th-century U.S. census data, the population of Ohio can be modeled by

\dpi{120} p(t)=\frac{12.79}{1+2.402e^{-0.0309t}}

where P is the population in millions and t is the number of years since April 1, 1900. Based on this model, when was the population of Ohio 10 million?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answers:

  • Asymptotes y=0, y=6,  Y intercept =(0, 3.3) ,Point of max  growth (-0.1, 3)
  • X=1.609
  • Year 1970

 

 

 

Log Functions and their Inverse

For any positive numbers b and x where b ≠ 1, log function is defined as \dpi{120} \log_{b}x and is read as “log base b of x

Logarithmic and exponential functions are related with the following expression.

\dpi{120} \mathbf{\log_{b}x=y}     if and only if    \dpi{120} \mathbf{b^{y}=x}

Using above relation log functions can be written as exponential functions and vice versa.

 

Example: Rewrite the following log expressions into equivalent  exponential expressions.

  1. \dpi{120} \log_{2}32=5 \Rightarrow 2^{5}=32
  2. \dpi{120} \log_{5}125=x \Rightarrow 5^{x}=125
  3. \dpi{120} 2\log_{2}512=x \Rightarrow 2^{\frac{x}{2}}=512
  4. \dpi{120} \log_{b}1=0 \Rightarrow b^{0}=1
  5. \dpi{120} \log_{b}b=1 \Rightarrow b^{1}=b

 

There are two types of log functions. One with base 10 is called common logarithm and other with base e is called natural logarithm.

Common logarithm                            Natural logarithm

 \dpi{120} \mathbf{\log_{10}x}  = log(x)                                    \dpi{120} \mathbf{\log_{e}x}  = ln(x)

Inverse of log functions:

Finding inverse of log function is very easy and similar to solving  an equation and converting log function into an exponential  equation. To find inverse of log functions, we use following algorithm.

  • Replace the function notation f(x) by y.
  • Switch over x and y.
  • Isolate the log function on one side.
  • Convert log equation into equivalent exponential equation using  rule  \dpi{120} \mathbf{\log_{b}x=y}\mathbf{\Rightarrow b^{y}=x}
  • Solve the exponential equation for y and at last replace y with \dpi{120} \mathbf{f^{-1}(x)}  .

Lets work on some examples  to understand this process.

Example1.Find inverse of log equation

\dpi{120} {\color{Red} f(x)=\log_{3}(x-2)}

Solution:  step1)      replace f(x) with y.

\dpi{120} y=\log_{3}(x-2)

Step 2)      switch over x and y.

\dpi{120} x=\log_{3}(y-2)

Step 3)      log function is already isolated.

Step 4)      convert log equation into exponential equation.

\dpi{120} 3^{x}=y-2

Step 5)   Solve for  y.

\dpi{120} 3^{x}+2=y

Replace y with    \dpi{120} \mathbf{f^{-1}(x)}

\dpi{120} f^{-1}(x)=3^{x}+2

 

Example2. Find inverse of the following log function.

\dpi{120} {\color{Red} f(x)=3\log_{3}(x+3)+1}

Solution:  Using the same procedure  as for above example we proceed as follows.

\dpi{120} y =3\log_{3}(x+3)+1

switch over x and y

\dpi{120} x =3\log_{3}(y+3)+1

start isolating y

\dpi{120} \frac{x-1}{3} =\log_{3}(y+3)

\dpi{120} 3^{\left ( \frac{x-1}{3} \right )}=y+3

\dpi{120} 3^{\left ( \frac{x-1}{3} \right )}-3=y

\dpi{120} 3^{\left ( \frac{x-1}{3} \right )}-3= f^{-1}(x)

 

 

Example3: Find inverse of the following natural log function.

  f(x) = -ln(1 – 2x) + 1

Solution:   Let  y =  -ln(1 – 2x) + 1

Switch over x and y ,

x = -ln(1 – 2y) + 1

x-1 = -ln(1 – 2y)

Multiply both sides by -1,

1-x = ln(1-2y)

\dpi{120} e^{1-x}=1-2y                      natural log (ln) has base ‘e’

\dpi{120} 2y= 1-e^{1-x}

\dpi{120} y= \frac{1}{2}\left (1-e^{1-x} \right )

 

 

Example4. Find the inverse of following exponential function.

\dpi{120} {\color{Red} f(x)= 2*3^{3x}-1}

Solution:

let  \dpi{120} y=2*3^{3x}-1

After switching over x and y we get,

\dpi{120} x=2*3^{3y}-1

\dpi{120} x+1=2*3^{3y}

\dpi{120} \frac{x+1}{2}= 3^{3y}

\dpi{120} \log_{3}\left ( \frac{x+1}{2} \right )= 3y

\dpi{120} \log_{3}\left ( \frac{x+1}{2} \right )= 3y

\dpi{120} \frac{1}{3}\log_{3}\left ( \frac{x+1}{2} \right )= y

\dpi{120} \frac{1}{3}\log_{3}\left ( \frac{x+1}{2} \right )= f^{-1}(x)

 

 

 

Example 5. Find inverse of following exponential function.

\dpi{120} {\color{Red} f(x)= 1-2e^{-2x}}

Solution:

let  \dpi{120} y = 1-2e^{-2x}

Switching  over x and y we get,

\dpi{120} x = 1-2e^{-2y}

\dpi{120} 2e^{-2y}= 1-x

\dpi{120} e^{-2y}= \frac{1-x}{2}

\dpi{120} -2y=ln\left ( \frac{1-x}{2} \right )

\dpi{120} y= -\frac{1}{2}ln\left ( \frac{1-x}{2} \right )

\dpi{120} f^{-1}(x)= -\frac{1}{2}ln\left ( \frac{1-x}{2} \right )

 

 

 

Practice problems:

  • Find the inverse of following log functions.
  1. \dpi{120} f(x)= \log_{2}(x-3)-5
  2. \dpi{120} f(x)= -2\log_{2}(x-1)+2
  • Find the inverse of following exponential functions.
  1. \dpi{120} f(x)= 2^{x}-3
  2.  \dpi{120} f(x)= -5e^{-x}+2

 

 

Answers:

       1. \dpi{120} f^{-1}(x)= 2^{(x+5)}+3

2.  \dpi{120} f^{-1}(x)= \frac{1}{2}10^{\left ( \frac{2-x}{2} \right )}+1

1.  \dpi{120} f^{-1}(x)= \log_{2}(x+3)

2. \dpi{120} f^{-1}(x)= -ln\left ( \frac{2-x}{5} \right )

 

 

 

Solving Logarithmic equations

How to solve logarithmic equations

The equations having logs are called logarithmic equations. Before going to solve logarithmic equations, we should be familiar with basic logarithmic rules. Here is a recap.

\dpi{120} \mathbf{\log_{b}A- \log_{b}B=\log_{b}\left ( \frac{A}{B} \right )}                   Quotient formula

\dpi{120} \mathbf{\log_{b}A+ \log_{b}B=\log_{b}\left ( AB \right )}                   Product formula

\dpi{120} \mathbf{A\log_{b}C = \log_{b}C^{A}}                                      Power formula

\dpi{120} \mathbf{\log_{b}A= \frac{logA}{logb}}                                               Change of base formula

 

All the above formulas are applicable for natural logs(ln) too.

Some facts:

\dpi{120} \log_{b}b =1

\dpi{120} \log_{b}1 =0

\dpi{120} \log_{b}x =\log_{b}y \Rightarrow x=y

\dpi{120} \log_{10}10 =1

\dpi{120} \log_{10}100 =2

\dpi{120} \log_{10}1000 =3    and so on…

 

There are two types of logarithmic equations. One having logs on both sides with same base. These are easy to solve  as log with same base on both sides get eliminated and inside expressions get equated. Equations with different bases become more complex.

Lets work on some first kind of logarithmic equations.

 

Example1  Solve   \dpi{120} {\color{Red} \log_{2}(x-1)=\log_{2}4}

Solution:  As we can see, this equation has log with same base(2) on both sides so we can just equate the inner expressions.

x-1 = 4   =>  x = 5

Example 2 Solve \dpi{120} {\color{Red} \log_{10}(x+1)+\log_{10}(x-1)=\log_{10}8}

Solution: Here first we simplify the expression on left side , make it a single log expression using product formula.

\dpi{120} \log_{10}(x+1)+\log_{10}(x-1)=\log_{10}8

\dpi{120} \log_{10}\left [ (x+1)(x-1) \right ]=\log_{10}8

(x+1)(x-1) = 8

\dpi{120} x^{2}-1=8

\dpi{120} x^{2}=9

x=-3 , 3

Note: Don’t forget to check the solutions by plug in them back into original equation.

Check: When we plug in x=-3 we get

\dpi{120} \log_{10}(x+1)=\log_{10}(-3+1)=\log_{10}(-2)

and we know that inside of a log function can’t be negative as logs are not defined for negative values.

So only solution is  x=3

Log written without base is assumed  as log with base 10 and is called common logarithm. Here is an example to show this.

 

Example 3. Solve for x , log(-x+1)=log(x+5)

Solution: This  type of logs are called common logs and we can continue to solve them like this without writing any base as long as there are only logs(without base) on both sides.

log(-x+1)=log(x+5)

-x+1 = x+5

1-5 = x+x

-4 = 2x

-2 = x

When we plugin back x=-2 into original equation it gives valid log functions so x= -2 is a solution.

It is okay to have x values as negative and 0 but we can’t accept such values  as solution which gives inside of logs as negative because

                                  Log( negative values) = undefined

                                  Log(0) = undefined

 

Solving equations having natural logs:

Natural logs(ln) is nothing but same as log  with base e instead of 10. We can use same formulas as we used for logs .

 

Example4 . solve ln(x+1)-ln(x-4) = ln3

Solution: using quotient rule on left side,

\dpi{120} ln\left ( \frac{x+1}{x-4} \right )=ln3

ln  from both sides can be dropped and we can equate the inner parts.

\dpi{120} \frac{x+1}{x-4}=3

X+1 = 3(x-4)

X+1 = 3x-12

1+12 =3x-x

13 =  2x          =>     x = 13/2

After checking by plugging it into original equation we get that x= 13/2 is a valid solution!

 

Example 5. Solve the logarithmic equation  and  find the valid solution.

\dpi{120} {\color{Red} \log_{3}(x+2)-\log_{3}x=\log_{3}(2x-1)-\log_{3}(3x-12)}

Solution: using quotient rule on both sides,

\dpi{120} \log_{3}\left ( \frac{x+2}{x} \right )=\log_{3}\left ( \frac{2x-1}{3x-12} \right )

Logs with same bases can be dropped from both sides.

\dpi{120} \frac{x+2}{x}=\frac{2x-1}{3x-12}

Now this is simple algebraic equation which can be solved further  by cross multiplying both sides.

(x+2)(3x-12) = x(2x-1)

\dpi{120} 3x^{2}-6x-24=2x^{2}-x

\dpi{120} x^{2}-5x-24=0

(x-8)(x+3) = 0 [factored the quadratic equation]

X= -3, 8

Check: when we plug in back x=-3 and x=8 into original equation , we get that only  x=8 is a valid solution as x=-3 results into log of negative number  which is undefined.

 

When all terms of logarithmic equation doesn’t have logs  and  any one term is a constant term. This is second type of logarithmic equation unlike the first type where we had all log terms on both sides. To solve these  kind of problems we use  formula,

                         If   \dpi{120} \mathbf{y=\log_{b}x}    then     \dpi{120} \mathbf{x=b^{y}}

 

Example 6. Solve for x, \dpi{120} {\color{Red} \log_{2}(x+2)= 5}

Solution: using the formula given above rewrite the logarithmic equation as an exponential equation.

\dpi{120} (x+2)= 2^{5}

x+2  = 32   =>   x=30

 

For equations having natural logs(ln) instead of common logs,  we use base e as shown in the example below.

 

Example7. Solve the given logarithmic equation for x. Round your answer to nearest hundredth.

                        ln(2x-1) = 5

Solution:      Since natural log has base e so ln get changed to base e on other side.

\dpi{120} (2x-1)=e^{5}

2x-1 = 148.4131

2x = 149.4131

X = 74.7065  ≈  74.71

 

Example8 . Solve  log(x) +log(x+15) = 2

Solution: Using product rule on left side,

log[x(x+15)] = 2

log(x^2 +15x) = 2

We know that common log get changed to base 10 so,

\dpi{120} x^{2}+15x = 10^{2}

\dpi{120} x^{2}+15x- 100=0

Now get factors of this quadratic equation.

(x+20)(x-5) = 0

x=-20 , x=5

Check: when we plug in x=-20 into original equation we get log(-20) which is not defined. So x=-20 is not a valid solution.

Only solution is x=5 !

 

Example9. Solve  \dpi{120} {\color{Red} \log_{2}x-\log_{2}(\sqrt{x}-1)=2}

Solution: Using quotient  rule on left side,

\dpi{120} \log_{2}\left ( \frac{x}{\sqrt{x}-1} \right )=2

Changing log to exponential form,

\dpi{120} \frac{x}{\sqrt{x}-1}= 2^{2}

x = 4(√x-1 )

x = 4√x  – 4

x+4 = 4√x

Squaring both sides,

\dpi{120} (x+4)^{2}=\left ( 4\sqrt{x} \right )^{2}

\dpi{120} x^{2}+8x+16=16x

\dpi{120} x^{2}-8x+16=0

(x-4)(x-4) = 0

x= 4

 

 

 

Practice problems:

Solve the following logarithmic equations. Round your answers to nearest hundredth wherever possible.

  1. \dpi{120} \log_{10}(x)+\log_{10}(x-6)=\log_{10}2x-7
  2. \dpi{120} 2 \log_{3}(x+1)=\log_{3}(x+2)-\log_{3}(x-3)
  3. ln(6x-5) = 3
  4. \dpi{120} \log_{6}x+\log_{6}(x-9)=2
  5. \dpi{120} \log_{5}(x-3)=\log_{5}\left ( \sqrt{x+3} \right )

 

 

 

 

 

 

Answers:

  • X=7
  • No solution
  • X=4.18
  • X=12
  • X=6

 

Simplify logarithmic expressions

How to simplify Logarithmic expressions

The expressions having logs or natural logs(ln)  are called  logarithmic expressions. Before going to simplify logarithmic expressions , we should be familiar with basic logarithmic rules. Here is a recap.

\dpi{120} \mathbf{\log_{b}A- \log_{b}B=\log_{b}\left ( \frac{A}{B} \right )}                   Quotient formula

\dpi{120} \mathbf{\log_{b}A+ \log_{b}B=\log_{b}\left ( AB \right )}                   Product formula

\dpi{120} \mathbf{A\log_{b}C = \log_{b}C^{A}}                                      Power formula

\dpi{120} \mathbf{\log_{b}A= \frac{logA}{logb}}                                               Change of base formula

 

All the above formulas are applicable for natural logs(ln) too.

Some facts:

\dpi{120} \log_{b}b =1

\dpi{120} \log_{b}1 =0

\dpi{120} \log_{b}x =\log_{b}y \Rightarrow x=y

\dpi{120} \log_{10}10 =1

\dpi{120} \log_{10}100 =2

\dpi{120} \log_{10}1000 =3    and so on…

Lets start with solving simple logarithmic expressions.

Solving Logarithmic expressions without calculator

Example1. Solve the expression using properties of logs.

1.

\dpi{120} {\color{Red} \log_{3}81} = \log_{3}3^{4}                        write 81 using exponents

\dpi{120} =4\log_{3}3                                                   Using  power formula

=  4(1)  = 4

 

2.

\dpi{120} {\color{Red} \log_{5}0.04} = \log_{5}\left ( \frac{4}{100} \right )                        get rid of decimals

\dpi{120} = \log_{5}\left ( \frac{1}{25} \right )                                                     reduced  the fraction to lowest terms

\dpi{120} =\log_{5}5^{-2}                                                          write using  exponents

\dpi{120} = -2\log_{5}5                                                       used power formula

= -2 (1)   => -2                                                     using fact that   \dpi{120} \log_{b}b=1

 

3.

\dpi{120} {\color{Red} \log_{\frac{1}{2}}(8)} = \frac{log8}{log\frac{1}{2} }                      using change of base formula

\dpi{120} = \frac{log2^{3}}{\left ( log1-log2 \right )}                          using quotient formula

\dpi{120} =\frac{3log2}{0-log2}                                     using fact that log1 =0

\dpi{120} =\frac{3log2}{-log2} =\frac{3}{-1} = -3

 

4.

\dpi{120} {\color{Red} \log_{9}3}= \frac{log3}{log9}                          using change of base formula

\dpi{120} =\frac{log3}{log3^{2}}

\dpi{120} =\frac{log3}{2log3} = \frac{1}{2}

 

Evaluating  Logarithmic expressions   

 

Example2. Use  \dpi{120} {\color{Red} \log_{5}3\approx 0.683 and \log_{5}7\approx 1.209}   to approximate the following

Solution:

1.

\dpi{120} {\color{Red} \log_{5}\left (\frac{3}{7} \right )}= \log_{5}3- \log_{5}7                 using  quotient formula

=  0.683 – 1.209

= -0.526

2.

\dpi{120} {\color{Red} \log_{5}(63)}= \log_{5}\left ( 3^{2}*7 \right )

\dpi{120} =\log_{5}3^{2}+ \log_{5}7          using product formula

\dpi{120} =2\log_{5}3+ \log_{5}7         using power formula

=2(0.683) + 1.209

= 1.366 + 1.209  = 2.575

3.

\dpi{120} {\color{Red} \log_{5}\left (\frac{9}{49} \right )}= \log_{5}9- \log_{5}49          using quotient formula

\dpi{120} =\log_{5}3^{2}- \log_{5}7^{2}

\dpi{120} =2\log_{5}3-2 \log_{5}7                                    using power formula

=  2(0.683) -2(1.209)

=   1.366 – 2.418 =  -1.052

 

Expanding logarithmic expressions

Example 3. Expand the following expressions using properties of logs.

1.

\dpi{120} {\color{Red} \log_{2}\left ( \frac{4y^{3}}{x^{2}} \right )} = \log_{2}\left ( 4y^{3} \right )-\log_{2}\left ( x^{2} \right )     using quotient formula

\dpi{120} =\log_{2}4+\log_{2}y^{3}-\log_{2}x^{2}                                    using product formula

\dpi{120} =2\log_{2}2+3\log_{2}y-2\log_{2}x                             using power formula

\dpi{120} =2+3\log_{2}y-2\log_{2}x                                          using  the fact  \dpi{120} \log_{2}2=1

 

 

2.

\dpi{120} {\color{Red} \log_{6}\left ( \frac{36x^{3}}{\sqrt{y}} \right )} = \log_{6}\left ( 36x^{3} \right )-\log_{6}\left ( \sqrt{y} \right )          using quotient formula

\dpi{120} = \log_{6}\left ( 6^{2} \right )+\log_{6}x^{3}-\log_{6}y^{\frac{1}{2}}                                    using product formula

\dpi{120} = 2\log_{6} 6+3\log_{6}x-\frac{1}{2}\log_{6}y                                    using power formula

\dpi{120} = 2(1)+3\log_{6}x-\frac{1}{2}\log_{6}y    using  the fact \dpi{120} \log_{6}6=1

\dpi{120} = 2+3\log_{6}x-\frac{1}{2}\log_{6}y

 

3.

\dpi{120} {\color{Red} \log_{2}\left ( \frac{32\sqrt[3]{x}}{y^{3}} \right )} = \log_{2}\left ( 32\sqrt[3]{x} \right )-\log_{2}\left ( y^{3} \right )      using quotient formula

\dpi{120} = \log_{2}\left ( 32\right )+\log_{2}\sqrt[3]{x}-\log_{2}y^{3}                                  product formula

\dpi{120} = \log_{2}\left ( 2^{5}\right )+\log_{2}x^{\frac{1}{3}}-\log_{2}y^{3}

\dpi{120} = 5\log_{2}2+ \frac{1}{3}\log_{2}x-3\log_{2}y                                    power formula

\dpi{120} = 5+ \frac{1}{3}\log_{2}x-3\log_{2}y

 

 

Condensing Logarithmic expressions

To condense the log expressions, we apply reverse of power formula , product  formula and quotient formula.

 

Example 4. Condense the following expressions  into single logarithm using properties of logs.

1)  \dpi{120} {\color{Red} 7\log_{4}2+5\log_{4}x+3\log_{4}y}

\dpi{120} \log_{4}2^{7}+\log_{4}x^{5}+\log_{4}y^{3}               reverse power formula

\dpi{120} \log_{4}\left ( 2^{7}x^{5}y^{3} \right )                reverse product formula

\dpi{120} \log_{4}\left ( 128x^{5}y^{3} \right )

 

 

2)  \dpi{120} {\color{Red} 4\log_{3}2+2\log_{3}3-2\log_{3}6}

\dpi{120} \log_{3}2^{4}+\log_{3}3^{2}-\log_{3}6^{2}               reverse power formula

\dpi{120} \log_{3}\left ( 2^{4}3^{2} \right )-\log_{3}6^{2}                           reverse product formula

\dpi{120} \log_{3}\left ( \frac{2^{4}3^{2}}{6^{2}} \right )                                            reverse  quotient formula

\dpi{120} \log_{3}\left ( \frac{144}{36} \right )=\log_{3}4

 

3) ln(3x)-4ln(y)- (1/2) ln(z)

\dpi{120} ln(3x)- ln y^{4}-lnz^{\frac{1}{2}}                              reverse power formula

\dpi{120} ln(3x)- \left [ln y^{4}+lnz^{\frac{1}{2}} \right ]                         negative sign factored out

\dpi{120} ln(3x)-ln\left ( y^{4}z^{\frac{1}{2}} \right )                                 reverse  product formula

\dpi{120} ln\left ( \frac{3x}{y^{4}\sqrt{z}} \right )                                                reverse quotient formula

 

 

 

Practice problems:

  • Solve the expression using properties of logs.

\dpi{120} \log_{\frac{1}{3}}(27)

\dpi{120} \log_{4}(0.25)

  • Use log2 ≈ 0.3010 and  log3 ≈ 0.4771 to approximate the following.

log(12)

Log(5)

  •  Expand the following expressions using properties of logs.

\dpi{120} \log_{3}\left ( \frac{9yz^{3}}{x^{5}} \right )

\dpi{120} ln\left ( \frac{36\sqrt[4]{x}}{y^{2}z} \right )

  • Condense the following expressions into single logarithm using properties of logs.

\dpi{120} \frac{1}{4}\log_{5}81-\left ( 2\log_{5}6-\frac{1}{2}\log_{5}4 \right )

\dpi{120} \frac{1}{2}\log_{4}x +\frac{1}{2}\log_{4}y

 

 

 

 

 

 

 

 

 

Answers:

  • -3 ,     -1
  • 0791 ,  0.699
  • \dpi{120} 2+\log_{3}y+3\log_{3}z-5\log_{3}x , \dpi{120} 2+\frac{1}{4}\log_{6}x-2\log_{6}y-\log_{6}z
  • \dpi{120} \log_{5}\left ( \frac{1}{6} \right )  , \dpi{120} \log_{4}\left ( \sqrt{xy} \right )

 

 

 

Transforming and Graphing logarithmic functions

Graphing logarithmic functions

There are two possible cases of logarithmic function \dpi{120} \mathbf{\log_{a}x}.

Case 1. When a>1

Then logarithmic function is increasing function with x intercept as (1,0).

Case 2. When 0<a<1

Then logarithmic function is decreasing function with x intercept same as (1,0).

Following graph will help you to observe the similarity and difference between two cases.

C:\Users\Suman Gupta\Documents\graph logs.jpg

 

Transformation of log functions

To graph log functions we need to understand the different transformations with respect to the parent log function \dpi{120} \mathbf{\log_{b}x} .
Here is a beautiful summary of all the transformations and the effect of these transformations on different parameters like domain, x-intercept, vertical asymptotes etc.

Function f(x) Transformation V.A. X -Intercept Domain Range
\dpi{120} \log_{b}x None X=0 (1,0) (0, ∞) (-∞,∞ )
\dpi{120} \log_{b}\left (x-c \right ) Shift right X=c (1+c,0) (c, ∞) (-∞,∞)
\dpi{120} \log_{b}\left (x+c \right ) Shift left X=-c (1-c,0) (-c,∞ ) (-∞,∞)
\dpi{120} \log_{b}x+d Shift up X=0 ( \dpi{120} b^{-d},0) (0,∞ ) (-∞,∞)
\dpi{120} \log_{b}x-d Shift down X=0 ( \dpi{120} b^{d},0) (0, ∞) (-∞,∞)
\dpi{120} \log_{b}(-x) Reflection across y axis X=0 (-1,0) (-∞,0 ) (-∞,∞)
\dpi{120} \log_{b}x Reflection across x axis X=0 (1,0) (0,∞ ) (-∞,∞)
\dpi{120} a\log_{b}x Vertical stretch X=0 (1,0) (0,∞ ) (-∞,∞)
\dpi{120} \frac{1}{a}\log_{b}x Vertical compression X=0 (1,0) (0, ∞) (-∞,∞)
\dpi{120} \log_{b}\left (x/k \right ) Horizontal stretch X=0 (k,0) (0, ∞) (-∞,∞)
\dpi{120} \log_{b}\left (kx \right ) Horizontal compression X=0 ( 1/k ,0) (0,∞) (-∞,∞)

 

 

And their respective graphs are shown below:

 \mathbf{log_{b} (x -c)} C:\Users\Suman Gupta\Documents\log 1-2.jpg
   \mathbf{log_{b} (x +c)} C:\Users\Suman Gupta\Documents\log 1-1.jpg
 \mathbf{log_{b} (x)+ d} C:\Users\Suman Gupta\Documents\log2-1.jpg
    \mathbf{log_{b} (x)- d} C:\Users\Suman Gupta\Documents\log2-2.jpg
  \mathbf{log_{b} (-x)} C:\Users\Suman Gupta\Documents\log3-2.jpg
   \mathbf{-log_{b} (x)} C:\Users\Suman Gupta\Documents\log3-1.jpg
 

\mathbf{{a}log_{b}(x)}

C:\Users\Suman Gupta\Documents\log4-1.jpg
 

 

 

 

\mathbf{\frac{1}{a}log_{b}(x)}

C:\Users\Suman Gupta\Documents\log4-2.jpg
    \mathbf{log_{b} \left (\frac{x}{k} \right )}

 

C:\Users\Suman Gupta\Documents\log7.png
      \mathbf{log_{b} \left ( kx \right )} C:\Users\Suman Gupta\Desktop\graph 8.png

 

Lets work on an example of combined transformation.

Example1 : Sketch the graph of y=log(x-2)+3 and state its domain, range , x intercept and vertical asymptote.

Solution: For this graph two steps of transformations are used with respect to parent function graph.

Parent function y= log(x)

Step1. Shift the basic graph to right by 2 units

Y= log(x-2)

Step 2) then shift the graph up by 3 units

Y= log(x-2) + 3

And we get the graph as shown by blue graph below.

C:\Users\Suman Gupta\Downloads\graph 1.png

Domain: (2, \infty )

Range: (-\infty , \infty)

Vertical asymptote : x=2

X intercept : =  \mathbf{\left ( b^{-d}+c,0 \right )=\left ( 10^{-3} +2,0 \right ) = \left ( 2.001,0 \right ) }

 

Example2: Sketch the graph of y=2log(3-x)-1 and state its domain, range , x intercept and vertical asymptote. Analyze it for increasing and decreasing behavior, continuity , symmetry and end behavior.

Solution: Rewriting given function in standard form we get,

Y=2log(-(x-3))-1

Now we apply following procedure to get its graph from parent function y= logx

Step 1) Shift the graph to right by 3 units.

Y = log(x-3)

Step 2) Reflect the graph along y axis.

Y= log(-(x-3))

Step3) Stretch the graph vertically by 2 units.

Y = 2log(-(x-3))

Step 4) Shift the graph down by 1 unit.

Y = 2log(-(x-3))-1

C:\Users\Suman Gupta\Documents\logs 1.png

Decreasing everywhere.

Continuous in its domain (- \infty ,3)

Not symmetric

End behavior: = \mathbf{\lim_{x\rightarrow -\infty }f\left ( x \right )=\infty } , \lim_{x\rightarrow 3^{-}}f(x)=-\infty

 

 

Practice problems:

Sketch the graph of following log functions and state their domain, range, asymptotes and intercepts if any.

  1. Y= ln(x) +2
  2. Y=log(x-3)
  3. Y=-3log(-x)
  4. Y=-3log(1-x)+1

Domain and Range of log function

Domain of different log functions:

  • The domain of the function of the form \dpi{120} \mathbf{f(x)= \log_{x}A}   is given as  x>0 where x≠ 1. It should be noted that x appears as base here. Writing this domain in interval form , we get

        Domain :  (0,1)U(1,∞ )

  • Whereas the domain of the function of the form  \dpi{120} \mathbf{f(x)= \log_{b}x}  is all the non negative real numbers.

          Domain(0, ∞ )

 

Note: Log functions are never defined for 0 and negative numbers and  range of logarithmic function\dpi{120} \mathbf{f(x)= \log_{b}x}  is all real numbers.

Lets work on some examples  where argument (input to the log) of log function may be some rational function , radical function or some other form.

 

Example 1.Find domain of the given function.

\dpi{120} {\color{Red} f(x)=\log_{10}\left ( \frac{x^{2}-7x+12}{x^{2}-4x+7} \right )}

Solution: Here argument of log function is a  rational  function. As we know that log is never defined for 0 and negative values  so we have to see where  this rational function have positive values.

\dpi{120} \frac{x^{2}-7x+12}{x^{2}-4x+7}> 0

Here function in the denominator doesn’t have real roots   and positive leading coefficient ensures that this will always give positive output  for all x values. That means we are only bothered by the expression on top as  denominator is always a positive  value.

\dpi{120} x^{2}-7x+12>0

(x-4)(x-3) > 0

 

      Intervals     (x-4)(x-3)      Result
      (-∞, 3)      (-)(-)        +
      (3,4)      (-)(+)        –
       (4,∞ )      (+)(+)        +

 

So the domain of given log function is  (-∞,3)U(4,∞ )

Using these values of x we get that maximum value of function occurs at x=0. So range of this function would be (-∞ , log(12/7 )] or (-∞ ,0.234]

 

Example 2. Find domain of the given log function.  

\dpi{120} {\color{Red} f(x)= \sqrt{\log_{10}\left ( \frac{6x-x^{2}}{8} \right )}}

Solution: As radicals are not defined for negative values ,

Therefore ,         \dpi{120} \log_{10}\left ( \frac{6x-x^{2}}{8} \right )\geq 0

converting log equation into exponential equation we get,

\dpi{120} \frac{6x-x^{2}}{8}\geq 10^{0}

\dpi{120} 6x-x^{2}\geq 8(1)                   \dpi{120} \left [10^{0}=1 \right ]

\dpi{120} 0\geq 8-6x+x^{2}

\dpi{120} x^{2}-6x+8\leq 0

(x-4)(x-2)≤ 0

Using  x=2,4  we get the intervals  as (-∞, 2), (2,4), (4,∞ )

      Intervals     (x-4)(x-2)      Result
      (-∞, 2)      (-)(-)        +
      (2,4)      (-)(+)        –
       (4,∞)      (+)(+)        +

 

So only interval(2,4)is accepted. Which is the domain of radical function. Next we find domain of log function.

\dpi{120} \frac{6x-x^{2}}{8}\geq 0

\dpi{120} 6x-x^{2}\geq 0

x(6-x) ≥ 0

Solving this we get two values  x=0,6. Using these  two values we get the intervals as.  (-∞, 0), (0,6), (6, ∞) and get a sign chart as follows.

      Intervals    x(x-6)      Result
      (-∞, 0)      (-)(+)        –
      (0,6)      (+)(+)        +
       (6,∞ )      (+)(-)        –

Only interval(0,6) is accepted.

To find final domain of complete function we find intersection of both intervals (2,4) and (0,6).

Domain: (2,4)(0,6) = [2,4]

Range: When we plug in x=2 and x=4 we get y=log1=0. Observing values between 2 and 4 we see that maximum value is obtained at x=3.  At x=3 we get

\dpi{120} y=\sqrt{\log_{10}\left (\frac{9}{8} \right )} =0.226

Range :  [0, 0.226]

 

Example3. Find domain and range of given function.

\dpi{120} {\color{Red} f(x)= log\sqrt{9-x^{2}}}

Solution: We know that log is never defined for 0 and negative values . That means     \dpi{120} \sqrt{9-x^{2}}> 0

\dpi{120} 9-x^{2}> 0

(3-x)(3+x) > 0

-3, 3 > x

Using x=-3,3 we get intervals as (-∞ ,-3),  (3,3)   ,(3,∞ )

      Intervals    (3-x)(3+x)      Result
      (-∞, -3)      (+)(-)        –
      (-3,3)      (+)(+)        +
       (3,∞ )      (-)(+)        –

 

Therefore, domain of this function is

Domain:  (-3,3)

To find range we plug in  x values as in the domain (-3,3) and get maximum value at x=0. So its  range is given as,

Range: (-∞ , log3]

 

 

 

 

Practice problems:

Find domain  and range of given log functions:

  1. \dpi{120} f(x)= \log_{10}\left ( \sqrt{5-x}+\sqrt{x-1}\right )
  2. \dpi{120} f(x)=\log_{10}\left ( x^{2}-3x+4 \right )
  3. \dpi{120} f(x)=\log_{10}\left ( x^{2}-4 \right )
  4. \dpi{120} f(x)=log\left ( x^{2}-5x+6 \right )
  5. \dpi{120} f(x)=\log_{10}\left ( x+5 \right )

 

 

 

 

 

 

Answers:

  • Domain: [1,5] , Range :[log2, log2√2 ]
  • Domain: (-∞,∞ ), Range:[log( 7/4) ,∞ )
  • Domain: (-∞ ,-2) U (2,∞ ) Range: (-∞,∞)
  • Domain: (-∞ ,2) U (3,∞ ) Range: (-∞,∞ )
  • Domain: (-5, ∞) Range : (-∞,∞)